
Abstract

Overview
The brain is foremost the most important organ in the human body, with a vast number of tissue 
and cell types. Brain cell types include neurons, oligodendrocytes and their precursory forms, 
astrocytes with the help of epithelial cells, microglia and glia cells and sometimes a mixture or 
hybrid of many cell types.

Single cell RNA sequencing has provided a new method of studying the heterogeneity of cell 
types within a single tissue. However, analysis of highly dimensional data can prove challenging 
and meaningful analysis is often difficult to determine, and results are difficult to convey to the 
reader in a meaningful way. 

Aims and results
Here, the data and methodology of Darmanis et al., (2015) has been reanalysed by replicating 
the pipeline outlined, as well as processing the data through a new pipeline. Additionally, the 
results of the analysis have been integrated into a web interface 
(http://bioinf6.bioc.le.ac.uk/~srpgrpb/pages/) allowing for flexibility when viewing a range of 
three-dimensional graphs as well comparison of different clustering and preprocessing analysis 
approaches. PCA and tSNE clustering approaches were examined in both pipelines and the 
shared data allowed for some comparisons between the different methods of clustering the data.
Additionally, the numbers of predicted clusters varied between different approaches.

Conclusions
The study has provided insight into the challenges associated with replication of bioinformatics 
analysis, and presents a new method of presenting highly dimensional data on an online 
interface as an alternative to more traditional presentations of clustering analysis.

http://bioinf6.bioc.le.ac.uk/~srpgrpb/pages/


Introduction

The brain is composed of various cell types including neurons, oligodendrocytes and microglia. 
There have been many attempts to classify the brain tissue by cell type and producing a cellular 
atlas for visualisation of the structure of the brain. This would also help determine how the 
different cell type are expressed across different aged groups for example. 

Single cell RNA sequencing (scRNAseq) is a next generation sequencing technique that 
examines genomes of individual cells, but is more time consuming than bulk sequencing.  It is a 
highly sensitive technique that is now being used to study tissues and populations, and enhance 
cell function studies. Bulk cell sequencing technologies are commonly used for visualising 
transcriptomic and genomic data but is ineffective for the specificity needed in single cell 
sequencing (Li and Li, 2018). Sequencing tools and technologies are constantly being refined 
and pioneered as the resources available will continue to improve (Hwang, Lee and Bang, 
2018).

However, the bioinformatics analysis pipelines available to process the quantity of data produced
by an scRNAseq pipeline have not been perfected and as such newly available pipelines are 
regularly introduced to the scientific community. Determining the effectiveness of data analysis 
pipelines on the highly dimensional data that scRNAseq produces can be a particular challenge, 
alongside variable clustering methodologies making it difficult to elucidate meaningful 
conclusions from the data in a replicable manner. 

Presenting scRNAseq data can be a challenging process and interactive visualisation can make 
this easier. Interactive data presentation should always use user friendly interfaces allowing for 
customisation to overcome accessibility limitations such as colour blindness, and should always 
provide simple and easy to use interfaces to minimise user learning time. 

This study aimed to reanalyse the data from the Darmanis et al. (2015) paper by following the 
original methodology, as well as using a new analysis pipeline to reanalyse the data and 
investigate the differences different clustering approaches may have. 466 cells were used which 
were obtained from adult and foetal brain tissue, used to begin developing a ‘cellular atlas’ for 
the human brain (Ding et al, 2016). The analysis results have been presented on a user friendly 
website (http://bioinf6.bioc.le.ac.uk/~srpgrpb/pages/) to demonstrate key differences between 
many different preprocessing and downstream analysis steps. 

Methods

Obtaining the data:

Data was available from the Gene expression omnibus (GEO accession GSE67835), which 
illustrated an overview of the whole experiment. Using the SRA run selector, an overall run table 
could be downloaded along with an accession list. There were 466 samples remaining after the 

http://bioinf6.bioc.le.ac.uk/~srpgrpb/pages/


original quality control process from the paper. Some samples were excluded when they 
contained less than 400,000 reads, reducing the number of samples from 482 to 466.

FastQ files were downloaded using a perl scripted asperaconnect approach (Gerth, 2018), which
was faster than relying on ncbi sratools. First aspera was downloaded and installed from 
asperasoft.com (Zhu, 2015). The perl script was used with the following command perl 
sra_download.pl --ascp test_list.txt (with the text file containing SRR names). The gene 
expression for each cell sample were obtained to allow for replication of the original expression 
matrix. The metadata from  the run-info files provided experimental information on all cells. The 
same python script from the mrna processing method was used to combine the individual 
expression files together and replicate the gene expression matrix.

Original Pipeline

Data Preprocessing
The first step was to try and replicate the mRNA sequencing data method. If the original data 
was completely raw and unprocessed, then the following steps could have been carried out.  
Figure 1 shows a flowchart of the preprocessing steps outlined by the authors. 

The C++ version of Prinseq was first downloaded and installed (Cantu, Sadural and Edwards, 
2019). A Bash script was created to run the prinseq options used in the original paper 
(prinseq_script2.sh). Then FastQC and fadapa were installed to look for and remove 
overrepresented sequences (Andrews, 2017). Orphan pairs of less than 30bp’s in length had to 
be removed using prinseq. Any Nextera adaptors within the sequences had to be removed using
TrimGalore after it was installed (Krueger, 2012).

The remaining reads were aligned to the hg19 genome downloaded from UCSC (Kent et al., 
2002) using STAR. Table browser was used to produce an annotated GTF file to create a 
genome index for STAR alignment (Karolchik et al, 2004). However, the gene names in this file 
were in the wrong format and needed to be altered to SRR format. The genome index was 
generated using HPC spectre due to the high RAM requirement for the process. 

STAR was installed from the GitHub repository and ran to align the reads to the genome using 
the options that had previously been stated in their paper (Dobin, 2019).
HTSeq was then used to convert these reads to counts for the genes. It was installed and ran 
using the options stated in the paper (Anders, Pyl and Huber, 2015).
The output of these files were combined using the data_combination.py script and the counts 
were converted to counts per million in libre-office calc.

Clustering and visualisation
The data was split into 4 files based on the origin of the donated cells (foetal cells, adult 
neurons, foetal quiescent neurons and foetal replicating neurons) and the full dataset as shown 
in the data analysis flowchart in Figure 2. First, pairwise analysis was performed on the full 
dataset using the sdce package (version 1.99.4 as provided on the github page. This version 
requires flexmix (Leisch, 2004) to be at 2.3-13 before installation), as implemented in the 
scde_analysis.R script, where direct drop out weighting was used to determine the genetic 



distances between cells. Clustering analysis was then carried out on these distances using the 
Mclust package version 5.4.5 (Fraley et al, 2012) . 

The tsne package (version 0.1-3), was used to reduce the data to 3 dimensions. This could then 
be fed into the Mclust function to determine the presence and number of clusters using the 
Bayesian Information Criterion (BIC), and any errors that may have occurred in previous 
clustering approaches (Maaten and Hinton, 2008). 

Direct dropout analysis was repeated for the adult neuron and foetal cell datasets, then minimum
spanning trees were created for each of these sets of cells using the igraph package (version 
1.2.4.1) within R by calculating a distance graph and using it to produce a minimum spanning 
tree. The vertices of the minimum spanning tree were coloured in accordance to the walktrap 
cluster membership guidelines (Pons and Csardi, 2005). The longest path was determined as 

Figure 1: Pipeline flowchart for the mRNA preprocessing to produce a gene count 
matrix using the original author's methodology. When processing the FASTQ data 
provided from the original study it became apparent that many steps may have been 
carried out on the files prior to them being made available, but the extent of the processing 
was not made clear. As such, redundant steps (marked in grey) were not able to be carried 
out, and preprocessed FASTQ files which were available were used to generate the gene 
count matrix. 



the largest distance within the distance matrix. The individual neuron group datasets were 
combined into a set containing all neurons (adult and foetal).  Again, direct dropout was 
performed to produce a distance matrix. In this case, the distance matrix was used for principal 
components analysis (PCA), carried out using the FactoMineR package (version 1.42) within R 
(Husson et al, 2019).

Figure 2: Pipeline flowchart outlining the data analysis portion of the authors 
original pipeline. The analysis was carried out using the author provided gene count 
matrix, and also the matrix generated in an attempt to replicate the pipeline. Various 
subsets of cells individually underwent pairwise analysis using scde, followed by scde 
directed dropouts. Minimum spanning trees were created using the iGraph package 
on the foetal cells and adult neuronal cells. PCA plots were created using the 
FactoMineR R package, and MClust was used to determine cluster numbers using 
the Bayesian Information Criterion.



Alternative pipeline Data analysis
All alternative pipeline analysis was carried out using R version 3.6.1 and bioconductor version 
3.9. The new analysis pipeline developed in this project is outlined in Figure 3.

Figure 3: Pipeline flowchart demonstrating the newly implemented pipeline. The 
pipeline was initially going to use scPipe and further analysis by Scater and SC3 as 
recommended by the scPipe package, but due to technical difficulties caused by the 
provided FASTQ files having undergone some processing, scPipe was replaced with 
Rsubread to carry out the alignment and gene counting steps. Normalisation was carried 
out using the bioconductor Scater package, and two approaches for dealing with zero 
inflation were used. The first was simply using the Scater optional argument 
preserve_zeroes=FALSE during normalisation, whereas Zinbwave was a more 
computationally demanding purpose built method of accounting for zero inflation. SC3 
was used to predict an optimal K value for the number of clusters, and clustering was 
carried out on a range of values around the predicted value. Finally, the plotly package 
was used to visualise the clustered cells in three dimensions using both tSNE and PCA 
approaches. 



Rsubread data analysis. 
Rsubread (Liao, Smyth and Shi, 2019) is a bioconductor package available for R, and allows for 
the processing of FASTQ files and alignment to a reference genome in order to generate a gene 
count matrix. For this analysis a python program has been created (see: Rsubreadmultiproc.py 
on github) to implement the Rsubread portion of our scRNAseq analysis pipeline using a list of 
SRA accessions. Files were aligned to a reference index built from the gencode assembly of 
GRChr38 (primary assembly fasta file and gencode v31 GTF file for annotation). Each sample 
was then aligned to the index to generate an alignment bam file, and the Rsubread 
featurecounting function was used to generate a gene count matrix for the individual cell (see 
Rsubread_multi.R on github). 

This gene count matrix could then be processed into a total experiment gene count matrix using 
data_combination.py for downstream analysis. The gene count matrix produced by the authors 
were also utilised within the downstream analysis to identify whether the differences in clustering
produced by the authors were the result of the matrix production or due to the clustering pipeline
itself. 

SC3
The Scater pipeline (Kiselev et al, 2017) normalised the count matrix on a log2 scale to account 
for the proportional changes in values as opposed to the additive changes. We accounted for 
differences in library size, as the number of genes expressed between cells would not be 
consistent.

To account for the zero inflation found within scRNAseq data, Zinbwave was utilised as per the 
suggested pipeline analysis outlined by scPipe. As Zinbwave requires a cluster number, also 
known as a k value, the SC3 function ‘sc3_estimate_k’ estimated the optimal cluster number. 
Zinbwave was then implemented using the ‘BiocParallel’ package to account for the 
computational density of Zinbwave. As the effects of ZInwave on cluster were unknown, cluster 
analysis with and without Zinbwave were completed for further insight. 
 
Once the optimal k value was identified, clustering of the data was completed using a range of k 
values around optimal number and the full SC3 clustering pipeline was completed as per the 
SC3 documentation example (Kiselev et al., 2017). Clusters will be visualised using the 
‘plotTSNE’ and ‘plotPCA’ functions from the scater package utilising the ‘ncomponent’ arguments
to ensure that a 3D graph can be produced. Plotly (Sievert, 2018) utilised the 3D plot data from 
the scater outputs and produced a pure 3D graph to represent the data.

Website

Interface development: 
The website interface was developed using a number of languages. For text and layout, html 
was used, with css and javascript used to implement styles and menu interactivity respectively. 
PHP utilising the mysqli query functions was used to allow users to query a database created 
from the final results.



R Shiny graphs: 
Plotly (Sievert, 2018) was used to create 3D interactive Rshiny graphs for the clustering 
analysis. Plotly was also utilised to create the 3D graphs generated by the reanalysis of the 
authors methodology. This allowed for the graphs produced to be more comparable between 
pipelines due to the consistency in its usage. Rshiny was also used to provide interactivity to 
other graphs along the pipeline, allowing comparison between the results of the original pipeline 
when performed on count matrices obtained through different methods.

Cluster specific gene querying:
In order to allow users additional data visualisation of the clustering effects of the new pipeline a 
small database was generated from the reanalysis pipeline data. This was implemented using a 
mysql database allowing the user to query individual genes with k value from the final range 
used for clustering (5-25). Users are able to query a full list of gencode genes from the analysis 
pipeline, and information on the individual cells with recorded expression of that gene, alongside 
information about the cell type, tissue and donor for each cell provided by the metadata table 
provided by the original authors on the SRA website. 

Results

Website:
The analysis and reanalysis has been presented with an online website (found at 
http://bioinf6.bioc.le.ac.uk/~srpgrpb/pages/) which presents interactive graphs for PCA, 
clustering and minimum spanning trees, as well as an additional gene query interface.

Data was analysed using both pipelines to create a number of interactive graphs. The colours in 
these graphs can be controlled by colour pickers, which allows customisation of the graphs for 
cosmetic and accessibility reasons. Various datasets can be chosen from among a provided set,
as well as  allowing different clustering methods to be shown. The original pipeline determined 
the optimal clustering number by BIC, and the BIC graph, as well as uncertainty graphs for each 
of the datasets. The clusters calculated by that method as well as the cell types provided in the 
SRA run table were coloured on the tSNE plot, to show how well the calculated clustering and 
the run table matched. 

The PCA plots illustrate the differences in the principal components among the three neuron 
groups in the data. Minimum spanning trees show communities of cells, and likely relations 
between cells in the sample. For the new pipeline implementation, PCA and tSNE plots are 
presented using both the author generated gene count matrix and the Rsubread generated gene
count matrix, and is designed in such a way that has been designed to make comparisons 
between the variety of graphs created for future analysis. The level of interactivity allows for 
graphs to be visualised in 3D space, the clusters to be coloured as per the users selection and 
also allows for variable k-means to be selected to view comparisons between different values. 

Additionally, individual cell information based on expression of a gene can be queried in a 
separate search tool, which allows a user to query an individual gene and have a table of cells 
and properties of the cells returned.

http://bioinf6.bioc.le.ac.uk/~srpgrpb/pages/


Original Pipeline:

mRNA processing
Of the 466 cells that were downloaded and underwent processing, 5 cells were removed from 
the expression matrix was generated due to zero recorded gene expression within the matrix. 
The cells that were removed were SRR1974691, SRR1974705, SRR1974706, SRR1974707 
and SRR1974950. 

Clustering
The clustering was quite
variable between all the
different count matrices
produced, with each method
showing a different number
of clusters (8-10).  The
differences in clustering are
shown in figure 4, along with
the uncertainty of the
clusters in the dataset
produced by the original
pipeline.  Some of this
variation can be explained by
the stochastic nature of the
clustering methods. All of the
clustering was relatively
consistent with the cell types
provided in the SRA run
table, as shown in figure 5.
The dataset which provided
only eight clusters (the one

originally produced by 
the authors), appeared
to place many of the 
“hybrid” cells, the ninth
group, in the same 
cluster as the neurons.
Data from the new 
pipeline has generated
nine clusters 
resembling the cell 
type clustering, and 
following the author 
clustering methods has
also produced similar 

results. 

Figure 5. tSNE plots comparing predicted clustering 
against cell types. The dataset used was produced by 
the original pipeline.

Figure 4. BIC graphs for each count matrix.  a) the 
author generated count matrix showed 8 clusters through 
BIC analysis, b) the matrix produced through the same 
process as the original pipeline showed 10 clusters, c) the 
matrix produced through a new pipeline showed 9 
clusters.  d) shows the clustering uncertainty for b).



Spanning Trees
The spanning trees
produced a variable
number of
communities, with the
adult neurons showing
either 13 or 18
communities,
dependent on the
sample. 18
communities found
within the newer
pipeline dataset, and
13 communities were
found within the other
two.  The foetal neuron
spanning tree showed
between 9 and 13 clusters, with no consistency between the groups produced by the same 
method. The longest paths on these trees were calculated as the greatest distance between 
cells in the distance matrix, so while they may not look like the longest path on the spanning 
trees, this may be due to extra dimensions of community formation, not shown by the trees 
produced.  Both spanning trees for the original pipeline are shown in figure 6.

PCA
The PCA results among the neuron
groups in the sample were very 
similar across all three of the 
datasets used, and that similarity 
extends to the PCA graph in the 
original paper, all of them show the 
three different cell types as 
differentiated groups, as would be 
expected for three sets of cells that 
are known to have differences in 
expression.  The PCA for the 
original pipeline is shown in figure 
7.

Figure 7. PCA plot showing clustering of the three 
groups of neurons present in the sample.  The 
dataset used was the one produced by the original 
pipeline.

Figure 6. Spanning trees of the adult (left) and foetal (right) 
neurons, showing 13 communities in each case.  The dataset 
used was produced by the original pipeline.



Alternative Pipeline:

Clustering
After the formation of our gene count matrix, the  “sc3_esitmate_k” function within the SC3 
package suggests an optimal k value of 14 for non zinbwave transformed data and the zinbwave
altered self generated gene count matrix. The zinbwave transformed author generated gene 
count matrix was estimated to have an optimal k value of 12. In attempting to validate the 
optimal k values provided by SC3, k values from 5 to 25 were selected to investigate how 
different cluster numbers affect the groupings of cells by the pipeline. 

The interactive clustering plots showed certain conserved clusters were present in the full range 
of k values used for clustering when using SC3, one indicator that some of these clusters have 
biological significance. As seen in figure 8 , changes in K value only affect specific clusters within
the tSNE, suggesting that those clusters are not as defined as the clusters found by the authors. 
Zinbwave did not affect the PCA plots between the same datasets. As PCA plots are non-
stochastic compared to tSNE, having identical plots with and without zinbwave would highlight 
that zinbwave did not affect the clustering. 

Figure 8. A comparison between a 10 and 18 cluster tSNE plots using 
Author generated gene count matrix and without zinbwave. The black 
circles represent clusters that have been conserved between the two k 
values, whereas the red circles show clusters that change significantly. A; 
The 10 cluster tSNE plot. B; The 18 cluster tSNE plot. C; The PCA plots for 
the corresponding k values. The 10 cluster plot is the top image while the 
18 cluster plot is on the bottom. While the PCA plot is non-stochastic, the 
clusters are not clearly represented when compared to tSNE. 



When compared to the clusters produced by the authors and our clustering plots, it is apparent 
that the clusters are significantly different. As seen in the cell type plots on the cluster plot tab, 
the 9 distinct cell types identified by the authors are not all defined within our self generated 
clusters. Some cell types were independently clustered and conserved regardless of changes to 
the k value used to cluster the data, but the hybrid and neuron cell types appear to be clustered 
together. This is the case with the author or self gene expression matrices and with or without 
zinbwave. A single endothelial cell is found within the aforementioned cluster regardless of 
dataset used as well. This implies that either the SC3 did not cluster the cells correctly or that 
the cell types identified by the authors may not be accurate. When colouring the clusters using a 
k value of 9 (the same number of clusters identified by the authors), the resulting tSNE and PCA 
plot looks nearly identical to the cell type plots. This, along with the quality of the clusters, 
suggest the former.

Quality
As shown by the Quality graphs, the SC3 clustering of both the author and self generated gene 
count matrices were successful, however there were no k values where all of the clusters were 
of sufficient quality. While more subjective than the silhouette plot, the consensus matrix 
highlights that the cell similarities are the cause of how SC3 grouped the cells together. In 
contrast, the silhouette plots provide an objective, quantitative measure of the consensus matrix’
diagonality. As seen in all silhouette plots, the majority of clusters produced high scores, but 
there are at least one cluster that is significantly low. Overall, SC3 appears to group cells 
together effectively, but improvements are still possible. Example of these graphs can be seen in
figure 9.Based on these quality metrics, the issues observed when colouring the cells by the cell 
types identified by the authors are likely caused by SC3 itself. 

Challenges

mrna processing:
One issue that occurred was that no overrepresented sequences were found in the ‘Raw’ data 
using FastQC. However an error occurred within the expression matrix where all the genes were
producing zero expression results. This was a good indicator that the ‘raw’ data was not actually 
raw.

The Rsubread analysis of the raw data for the alternative pipeline implementation was mostly 
successful, however, it became apparent that a single cell of data was unavailable from the 
authors in a usable format due to an unknown file error on both the forward and reverse reads 
from the paired end data. The SRR in question (SRR1947800) was therefore omitted from the 
final gene count matrix output, and the alternative pipeline proceeded with only 465 out of the 
total 466 cells data provided by the original authors (Liao, Smyth and Shi, 2019). This gene 
count matrix can be found on our GitHub repository in the alternative pipeline folder 
(count_matrix). 

After normalisation with scater, SC3 identified the optimal cluster count on our self generated 
gene count matrix was 14 for both gene count matrices and regardless of zinbwave usage. After 
SC3 clustered the cells and identified any possible groups sized between 5 and 25, plottSNE 
was used within the scater package of R to produce a visual representation of the SC3 clusters. 



This led to the production of 2D graphs that sufficiently covered the K values that were 
determined within the SC3 analysis. The ncomponent argument within plottSNE was changed 
from 2 to 3 but did not produce any readable 3D graphs, so was replaced with Plotly.
Plotly is a visualisation tool that was used to create 3D interactive graphs in both the original 
methodology within the paper, and the alternative pipeline for a direct comparison, which may 
not always be possible when using different visualisation tools due to different options needed 
by the tools to work correctly. The interactive graphs produced for the author generated gene 
counting matrix and our self-generated gene counting matrix are present on the website. The 
graphs being  fully interactable, allow for the colours of each cluster to be changed, reorientation
of the graphs for viewing at different positions and a graph selector slider to pick which graph to 
view. 

Discussion

Our success/achievements in meeting project requirements
Overall, we have presented a comprehensive website with a range of interactive graphs to allow 
the user to explore our full set of results for both pipelines. Particular challenges were met when 
attempting the reanalysis of the data, in part due to the unknown nature of the available FASTQ 
files, but also due to insufficient documentation to replicate the authors final results, but the 
pipeline was implemented in a successful manner. Furthermore, the secondary pipeline analysis 
has demonstrated that there is a significant range of scRNAseq analysis pipelines available. 

Challenges in Analysis

Zinbwave

Zinbwave was originally chosen to account for the zero inflation within samples and possibly 
allow for a more accurate clustering to occur. It utilised the Bioconductor package within R 
(Risso et al, 2018). The expression matrix and SRA run –info files were converted into a 
summarised experiment object with rows containing non-essential information or genes with 0 
expression in all cells removed. 21625 genes remain from the original 22085. Zinbwave dealt 
with the zero inflation within the truncated SummarisedExperiment object using k = 14 and an 
epsilon of 21625. The documentation of Zinbwave specifies that the pipeline is resource 
intensive with no intent of optimising the code forthcoming. As shown in on the cluster plots 
under the ‘newer pipeline’ tab, only using Scater to normalise the gene count matrix results in 
tSNE clusters that are slightly better compared the clusters that utilised zinbwave modified count
matrices. This may be the result of tSNE’s stochastic nature, however the clusters produced 
within our analysis suggests that the zinbwave zero inflation accounting produced less 
pronounced clusters. This does not discount the importance of zero inflation on scRNAseq data, 
but only the implementation of zinbwave on multiple datasets would provide further insight into 
its usefulness.  

scPipe

Initially the pipeline chosen for the alternative pipeline analysis of the data provided by the 



author was scPipe, and the further analysis recommended for clustering and normalisation (SC3
and scater respectively) (Tian et al, 2018). Implemented correctly, scPipe would have been used
to strip barcodes and combine paired end reads into a single FASTQ file, before using Rsubread
to generate a reference genome index and align the reads to the reference as well as aligning 
the reads to the annotated exons. scPipe could then have been used to demultiplex the data 
given the barcode data for the cell, and then generate a gene count matrix using the gene 
counting function. However, during the implementation of the scPipe pipeline several issues 
were encountered. 

Firstly, the raw data provided by the authors was not accompanied by any information as to the 
degree of preprocessing it had undergone prior to upload, nor whether sequencing barcodes or 
UMIs remained in the data. This meant that an artificial barcode had to be added and then 
subsequently removed from the data, which drastically increased the processing time per cell for
the pipeline. Additionally, errors within the gene counting function resulted in gene matrices with 
no gene expression recorded to be produced, an error replicated with the scPipe package 
example data and is currently under investigation by a contributor to the scPipe repository. As 
such, an alternative pipeline was substituted in place of scPipe in order to complete analysis 
within the timeframe for the project.

When developing the alternative pipeline, various clustering approaches were tested before the 
actual alternative pipeline was decided on. Some of these methods included Cloud virtual 
resource (CloVR) sequencing through either VirtualBox or the online resource is normally used 
to provide a single automated pipeline that is easy for installation and usage (Angiuoli et al, 
2011). Granatum is a free, user-friendly, interactive online resource that was developed for 
people to use who have had little to no programming experience to analyse data and hopefully 
produce clusters. Using the expression matrix provided by the raw data, the genes within the 
datasets that had 0 expressions were automatically removed causing the genes to go from 
22085 to 21360 genes for 466 samples. All the clustering methods that could have been 
selected produced a different number of random clusters and was only used as a pure 
comparison basis to see if actual secondary pipeline was clustering in a similar way (Zhu et al., 
2017). 

Documentation 

Particular challenges were met during both reanalysis and implementation of the new pipeline 
due to difficulty locating sufficient documentation for software. The authors did not provide the 
original scripts used for analysis nor the particular arguments used which is one factor in 
understanding the discrepancies between the published results and what was replicated 
following their pipeline. Additionally, the implementation of the secondary pipeline was 
repeatedly hindered by insufficient documentation on possible arguments (or values that could 
be assigned to the arguments) being available from the linked documentation for the software 
packages. 



Future improvements

To the website
To develop a website that could be useful to others, expansion of the interface to allow for users 
to submit their own data to run through our pipeline could be implemented. Full implementation 
of  a data analysis pipeline could prove beneficial, providing a set environment for scRNAseq 
gene expression matrix analysis, although some steps in analysis (such as Zinbwave zero 
accounting) can be time consuming and would not be practical to implement on a reactive web 
interface. 

To analysis
With additional time the knowledge we have gained on scRNAseq analysis could be applied to 
carry out additional analysis on the results. For example, since 2015 a number of new clustering 
techniques have been introduced such as the Seurat package (Stuart et al., 2019), for this data 
Louvain clustering on the PCA space could be completed. Subsetting the samples further for 
individual group feature selection and PCA for clustering could also be an option, which would 
eliminate the necessity of multiple spanning trees within the analysis. 

Comparison to currently available resources
Due to increasing popularity of scRNAseq analysis, interactive online visualisation tools are 
becoming commonplace. The scope of many of these tools is significantly larger than what has 
been presented in our web resource. For example Clustvis (Metsalu and Vilo, 2015) is an online 
PCA visualisation tool which allows for import of user data. Additionally comprehensive 
resources such as iDEP were found covering full analysis of both example data and allows for 
users to input their own datasets (Ge, Son and Yao, 2018). The larger scope of this online tool 
makes for a more comprehensive analysis, as alongside our website functionality heatmaps, 
examine expression for entire gene pathways and more. However, despite resources with these 
functionalities being available, obtaining and maintaining grant funding to provide web based 
applications for analysis can be challenging due to the relatively small number of researchers in 
the field. 

Comparing clustering approaches
Cluster formation is governed by the similarity of expressed genes between each cell and 
grouping the most similar. This can result in outliers or incorrectly identified genes affecting 
which clusters those cells identified within. Bootstrapping provides a method of identifying the 
effects of specific genes on the clustering algorithm. Ideally, a number of genes will be used to 
categorise each cell into their clusters and the removal of one gene should not have a significant
effect on those cluster assignments. The reference genome annotation file utilised in the self 
generated gene count matrix contains 59050 genes, therefore bootstrapping each gene would 
be time consuming and resource intensive. Given additional time, this would provide additional 
insight regarding the cluster formations that is not currently known.



Gene matrix counts
The clusters generated by both the author and self generated gene count matrices are 
effectively identical. Comparing the PCA plots for both datasets show minimal differences and 
the tSNE plots appear to differ only due to the plot’s stochastic nature. This is particularly of note
as the author’s gene count matrix contains 22,085 genes, whereas our gene count matrix 
accounts for isoforms of each gene, resulting in 59,050 genes being present. The lack of 
clustering differences isn’t surprising as the reads would align to a specific isoform of a gene as 
opposed to a general gene construct. Differences in clustering could have arisen, but were not 
seen in our investigations. Overall, no issues can be directed at the author’s matrix as a gene 
count matrix utilising a different reference genome version, reference annotation file and pipeline
produced significantly similar clusters using SC3. 

K mean determination
Completing the SC3 analysis using a wide range of k values provided insight into highly 
conserved clusters within the data. If clusters are conserved within a range of K values, then it 
can be assumed that the formation of those clusters are accurate. The stability plots shown, the 
example shown in figure 9C, within the quality plots highlight whether a specific cluster at a K 
value is present when a K value is changed. The stability plots show that there are small 
numbers of clusters at each K value that have low stability scores. Ideally, as the value of K 
increases, the clusters should gradually change to compensate. As figure 8 shows, specific 
clusters are conserved within the author gene count matrix tsne plot, however certain clusters 
fragment more rapidly as the value of K increases. This would suggest a disparity in the 
clustering quality, however the cell number appears sparse. The small cell number will increase 
the effect of an increased K value. As a result, utilising a larger sample set is advisable when 
identifying clusters. With more samples, larger K values can be included to see the incremental 
effect of increasing K on the cluster formations. 

The files available on the public repository provided by the authors ranged in size from 100MB to
1.6GB per cell. The true raw data was unlikely to be this small, and as no overrepresented 
sequences were found after the first prinseq step, then it’s possible that the data is not available 
on the public repository in a true raw fastq format. Most likely, some of the mRNA preprocessing 
steps were carried out on the data prior to uploading. This is a possible reason why not all of the 
steps in the papers methodology needed to be carried out. The only steps carried out in the 
reanalysis were STAR, HTSeqand the count conversion to counts per million. The overall 
expression matrix seems to be similar to the expression matrix that was produced within the 
paper.



 
A comparison between the expression matrix produced within the mrna processing and the raw 
data expression matrix already available showed that the results were similar for the most 
expressed gene across samples, but the amount of expression was different. There was also a 
large difference in the number of genes being expressed. With the ‘Raw’ expression matrix there
were 22085 that were having their expression observed. But the mrna expression matrix 
contained 28518 genes. This was probably down to the methodology not being exact enough to 
100% know if all the steps within their methodology could be carried out on data that was ‘Raw’. 
Another reason for this difference could be that the genome reference we used for alignment 
was not the same version as the one they used in the paper. All genome versions contain 
different amounts of data and could affect the results of the alignment.

Differentially expressed genes, marker genes and expression matrices were also produced and 
viewable on the website, but will not be focused upon. It is beneficial to investigate the specific 
genes utilised to create each cluster and locate the cell type closest to each cluster’s gene 

Figure 9. The quality plots generated by SC3 for the author generated gene count 
matrix, without zinbwave and using a k value of 10. These plots are available under the 
‘newer pipeline’ tab on our website. A; The consensus matrix has each cell on the X and Y 
axis, with the red side of the colour bar highlighting that the cells are similar whereas the blue 
colour denotes the cells are different. B; The silhouette plot illustrates the diagonality of the 
consensus matrix, with a score of 1 describes a perfect block diagonal consensus matrix and 
0 highlights no block-diagonal structure. C; The cluster stability plot which highlights whether 
the clusters generated at a specific k value are conserved within different k values. A score of 
1 illustrates the cluster is conserved exactly in other K values and 0 denotes the cluster is not 
present in any other K value. 



expression profile. Insufficient time prevented further analysis and is something to investigate in 
the future. 

Conclusion
Attempting a reanalysis of Darmanis et al., (2015)’s research has revealed many of the 
challenges in day to day scRNAseq data analysis, as well as issues in methodology 
documentation in bioinformatics research preventing true reproducibility.  Both the reanalysis of 
the original pipeline and the alternative pipeline failed to replicate the results produced within the
actual paper.

The website that we have produced demonstrates the high dimensionality of the data, and 
provides opportunities to directly compare the results between different clustering methodologies
and k means. This clearly displays the wide variances between clustering methodologies, and 
exposes the difficulties in determining the “true” results when comparing to noise generated by 
the experimental methods.
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Code Appendix:
All code used in this investigation can be found on our github repository at 
https://github.com/MichaelKubiak/Group_project

https://github.com/MichaelKubiak/Group_project

